Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Emerg Microbes Infect ; 13(1): 2321994, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38377136

RESUMO

Vaccines utilizing modified messenger RNA (mRNA) technology have shown robust protective efficacy against SARS-CoV-2 in humans. As the virus continues to evolve in both human and non-human hosts, risk remains that the performance of the vaccines can be compromised by new variants with strong immune escape abilities. Here we present preclinical characterizations of a novel bivalent mRNA vaccine RQ3025 for its safety and effectiveness in animal models. The mRNA sequence of the vaccine is designed to incorporate common mutations on the SARS-CoV-2 spike protein that have been discovered along the evolutionary paths of different variants. Broad-spectrum, high-titer neutralizing antibodies against multiple variants were induced in mice (BALB/c and K18-hACE2), hamsters and rats upon injections of RQ3025, demonstrating advantages over the monovalent mRNA vaccines. Effectiveness in protection against several newly emerged variants is also evident in RQ3025-vaccinated rats. Analysis of splenocytes derived cytokines in BALB/c mice suggested that a Th1-biased cellular immune response was induced by RQ3025. Histological analysis of multiple organs in rats following injection of a high dose of RQ3025 showed no evidence of pathological changes. This study proves the safety and effectiveness of RQ3025 as a broad-spectrum vaccine against SARS-CoV-2 variants in animal models and lays the foundation for its potential clinical application in the future.


Assuntos
COVID-19 , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Cricetinae , Humanos , Camundongos , Ratos , Animais , Vacinas Combinadas , SARS-CoV-2/genética , Vacinas de mRNA , Vacinas contra COVID-19/genética , COVID-19/prevenção & controle , Anticorpos Amplamente Neutralizantes , Camundongos Endogâmicos BALB C , RNA Mensageiro/genética
2.
Sci Bull (Beijing) ; 68(24): 3192-3206, 2023 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-37993332

RESUMO

The global emergence of SARS-CoV-2 variants has led to increasing breakthrough infections in vaccinated populations, calling for an urgent need to develop more effective and broad-spectrum vaccines to combat COVID-19. Here we report the preclinical development of RQ3013, an mRNA vaccine candidate intended to bring broad protection against SARS-CoV-2 variants of concern (VOCs). RQ3013, which contains pseudouridine-modified mRNAs formulated in lipid nanoparticles, encodes the spike (S) protein harboring a combination of mutations responsible for immune evasion of VOCs. Here we characterized the expressed S immunogen and evaluated the immunogenicity, efficacy, and safety of RQ3013 in various animal models. RQ3013 elicited robust immune responses in mice, hamsters, and nonhuman primates (NHP). It can induce high titers of antibodies with broad cross-neutralizing ability against the wild-type, B.1.1.7, B.1.351, B.1.617.2, and the newly emerging Omicron variants. In mice and NHP, two doses of RQ3013 protected the upper and lower respiratory tract against infection by SARS-CoV-2 and its variants. Furthermore, our safety assessment of RQ3013 in NHP showed no observable adverse effects. These results provide strong support for the evaluation of RQ3013 in clinical trials and suggest that it may be a promising candidate for broad protection against COVID-19 and its variants.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Vacinas de mRNA , Animais , Cricetinae , Camundongos , COVID-19/prevenção & controle , Vacinas contra COVID-19/imunologia , Vacinas de mRNA/imunologia , SARS-CoV-2/genética , Primatas , Imunogenicidade da Vacina , Anticorpos Amplamente Neutralizantes , Anticorpos Antivirais
3.
Sci Adv ; 9(27): eadg4846, 2023 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-37418529

RESUMO

Autoproteolysis has been discovered to play key roles in various biological processes, but functional autoproteolysis has been rarely reported for transmembrane signaling in prokaryotes. In this study, an autoproteolytic effect was discovered in the conserved periplasmic domain of anti-σ factor RsgIs from Clostridium thermocellum, which was found to transmit extracellular polysaccharide-sensing signals into cells for regulation of the cellulosome system, a polysaccharide-degrading multienzyme complex. Crystal and NMR structures of periplasmic domains from three RsgIs demonstrated that they are different from all known proteins that undergo autoproteolysis. The RsgI-based autocleavage site was located at a conserved Asn-Pro motif between the ß1 and ß2 strands in the periplasmic domain. This cleavage was demonstrated to be essential for subsequent regulated intramembrane proteolysis to activate the cognate SigI, in a manner similar to that of autoproteolysis-dependent activation of eukaryotic adhesion G protein-coupled receptors. These results indicate the presence of a unique prevalent type of autoproteolytic phenomenon in bacteria for signal transduction.


Assuntos
Clostridium thermocellum , Fator sigma , Fator sigma/química , Fator sigma/metabolismo , Transdução de Sinais , Clostridium thermocellum/química , Clostridium thermocellum/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Proteínas de Bactérias/metabolismo
4.
Nucleic Acids Res ; 51(8): 4000-4011, 2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-36912079

RESUMO

Two types of glycyl-tRNA synthetase (GlyRS) are known, the α2 and the α2ß2 GlyRSs. Both types of synthetase employ a class II catalytic domain to aminoacylate tRNAGly. In plastids and some bacteria, the α and ß subunits are fused and are designated as (αß)2 GlyRSs. While the tRNA recognition and aminoacylation mechanisms are well understood for α2 GlyRSs, little is known about the mechanisms for α2ß2/(αß)2 GlyRSs. Here we describe structures of the (αß)2 GlyRS from Oryza sativa chloroplast by itself and in complex with cognate tRNAGly. The set of structures reveals that the U-shaped ß half of the synthetase selects the tRNA in a two-step manner. In the first step, the synthetase engages the elbow and the anticodon base C35 of the tRNA. In the second step, the tRNA has rotated ∼9° toward the catalytic centre. The synthetase probes the tRNA for the presence of anticodon base C36 and discriminator base C73. This intricate mechanism enables the tRNA to access the active site of the synthetase from a direction opposite to that of most other class II synthetases.


Assuntos
Glicina-tRNA Ligase , Glicina-tRNA Ligase/genética , Anticódon , RNA de Transferência de Glicina/química , RNA de Transferência , Plastídeos
5.
PLoS Pathog ; 18(1): e1010170, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34986198

RESUMO

Pseudomonas aeruginosa is an important opportunistic pathogen capable of causing variety of infections in humans. The type III secretion system (T3SS) is a critical virulence determinant of P. aeruginosa in the host infections. Expression of the T3SS is regulated by ExsA, a master regulator that activates the expression of all known T3SS genes. Expression of the exsA gene is controlled at both transcriptional and posttranscriptional levels. Here, we screened a P. aeruginosa transposon (Tn5) insertional mutant library and found rplI, a gene coding for the ribosomal large subunit protein L9, to be a repressor for the T3SS gene expression. Combining real-time quantitative PCR (qPCR), western blotting and lacZ fusion assays, we show that RplI controls the expression of exsA at the posttranscriptional level. Further genetic experiments demonstrated that RplI mediated control of the exsA translation involves 5' untranslated region (5' UTR). A ribosome immunoprecipitation assay and qPCR revealed higher amounts of a 24 nt fragment from exsA mRNA being associated with ribosomes in the ΔrplI mutant. An interaction between RplI and exsA mRNA harboring its 24 nt, but not 12 nt, 5' UTR was confirmed by RNA Gel Mobility Shift and Microscale Thermophoresis assays. Overall, this study identifies the ribosomal large subunit protein L9 as a novel T3SS repressor that inhibits ExsA translation in P. aeruginosa.


Assuntos
Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Pseudomonas aeruginosa/patogenicidade , Proteínas Ribossômicas/metabolismo , Transativadores/metabolismo , Sistemas de Secreção Tipo III/metabolismo , Regiões 5' não Traduzidas , Células HeLa , Humanos , Pseudomonas aeruginosa/metabolismo , Transcrição Gênica , Virulência/fisiologia , Fatores de Virulência/metabolismo
6.
FASEB J ; 33(1): 286-300, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-29979632

RESUMO

Infectious bursal disease virus (IBDV) infection triggers the induction of type I IFN, which is mediated by melanoma differentiation-associated protein 5 recognition of the viral genomic double-stranded RNA (dsRNA). However, the mechanism of IBDV overcoming the type I IFN antiviral response remains poorly characterized. Here, we show that IBDV genomic dsRNA selectively binds to the host cellular RNA binding protein Staufen1 (STAU1) in vitro and in vivo. The viral dsRNA binding region was mapped to the N-terminal moiety of STAU1 (residues 1-468). Down-regulation of STAU1 impaired IBDV replication and enhanced IFN-ß transcription in response to IBDV infection, while having little effect on the viral attachment to the host cells and cellular entry. Conversely, overexpression of STAU1 but not the IBDV dsRNA-binding deficient STAU1 mutant (469-702) led to a suppression of IBDV dsRNA-induced IFN-ß promoter activity. Moreover, we found that the binding of STAU1 to IBDV dsRNA decreased the association of melanoma differentiation-associated protein 5 but not VP3 with the IBDV dsRNA in vitro. Finally, we showed that STAU1 and VP3 suppressed IFN-ß gene transcription in response to IBDV infection in an additive manner. Collectively, these findings provide a novel insight into the evasive strategies used by IBDV to escape the host IFN antiviral response.-Ye, C., Yu, Z., Xiong, Y., Wang, Y., Ruan, Y., Guo, Y., Chen, M., Luan, S., Zhang, E., Liu, H. STAU1 binds to IBDV genomic double-stranded RNA and promotes viral replication via attenuation of MDA5-dependent ß interferon induction.


Assuntos
Infecções por Birnaviridae/virologia , Proteínas do Citoesqueleto/metabolismo , Vírus da Doença Infecciosa da Bursa/genética , Helicase IFIH1 Induzida por Interferon/metabolismo , Interferon beta/metabolismo , RNA de Cadeia Dupla/metabolismo , RNA Viral/metabolismo , Proteínas de Ligação a RNA/metabolismo , Replicação Viral , Animais , Antivirais/metabolismo , Infecções por Birnaviridae/genética , Infecções por Birnaviridae/metabolismo , Galinhas , Proteínas do Citoesqueleto/genética , Genômica , Células HEK293 , Células HeLa , Humanos , Imunidade Inata/efeitos dos fármacos , Imunidade Inata/imunologia , Helicase IFIH1 Induzida por Interferon/genética , Interferon beta/genética , RNA de Cadeia Dupla/genética , RNA Viral/genética , Proteínas de Ligação a RNA/genética
7.
J Virol ; 92(2)2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-29093101

RESUMO

Infectious bursal disease virus (IBDV) is a bisegmented double-strand RNA (dsRNA) virus of the Birnaviridae family. While IBDV genomic dsRNA lacks a 5' cap, the means by which the uncapped IBDV genomic RNA is translated effectively is unknown. In this study, we describe a cap-independent pathway of translation initiation of IBDV uncapped RNA that relies on VP1 and VP3. We show that neither purified IBDV genomic dsRNA nor the uncapped viral plus-sense RNA transcripts were directly translated and rescued into infectious viruses in host cells. This defect in translation of the uncapped IBDV genomic dsRNA was rescued by trans-supplementation of the viral proteins VP1 and VP3 which was dependent on both the intact polymerase activity of VP1 and the dsRNA binding activity of VP3. Deletion analysis showed that both 5' and 3' untranslated regions (UTRs) of IBDV dsRNA were essential for VP1/VP3-dependent translation initiation. Significantly, VP1 and VP3 could also mediate the recovery of infectious IBDV from the authentic minus-sense strand of IBDV dsRNA. Moreover, downregulation or inhibition of the cap-binding protein eIF4E did not decrease but, rather, enhanced the VP1/VP3-mediated translation of the uncapped IBDV RNA. Collectively, our findings for the first time reveal that VP1 and VP3 compensate for the deficiency of the 5' cap and replace eIF4E to confer upon the uncapped IBDV RNA the ability to be translated and rescued into infectious viruses.IMPORTANCE A key point of control for virus replication is viral translation initiation. The current study shows that the uncapped IBDV RNA cannot be translated into viral proteins directly by host translation machinery and is thus noninfectious. Our results constitute the first direct experimental evidence that VP1 and VP3 are required and sufficient to initiate translation of uncapped IBDV genomic RNA by acting as a substitute for cap and replacing the cap-binding protein eIF4E. Significantly, VP1/VP3 mediate the recovery of infectious IBDV not only from the plus-sense strand but also from the minus-sense strand of the IBDV dsRNA. These findings provide not only new insights into the molecular mechanisms of the life cycle of IBDV but also a new tool for an alternative strategy for the recovery of IBDV from both the plus- and the minus-sense strands of the viral genomic dsRNA.


Assuntos
Infecções por Birnaviridae/virologia , Vírus da Doença Infecciosa da Bursa/fisiologia , RNA de Cadeia Dupla/genética , Proteínas Estruturais Virais/metabolismo , Regiões 3' não Traduzidas , Regiões 5' não Traduzidas , Animais , Linhagem Celular , Galinhas , Células HEK293 , Humanos , Camundongos , Biossíntese de Proteínas , Replicação Viral
8.
J Virol ; 91(3)2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-27881656

RESUMO

While the entry of infectious bursal disease virus (IBDV) is initiated by the binding of the virus to the two major receptors integrin and HSP90, the signaling events after receptor binding and how they contribute to virus entry remain elusive. We show here that IBDV activates c-Src by inducing the phosphorylation of the Y416 residue in c-Src both in DF-1 chicken fibroblasts and in vivo in the bursa of Fabricius from specific-pathogen-free (SPF) chickens. Importantly, inactivated IBDV fails to stimulate c-Src Y416 phosphorylation, and a very virulent IBDV strain induces a much higher level of c-Src Y416 phosphorylation than does an attenuated strain. Inhibition of c-Src activation by an Src kinase inhibitor or expression of a c-Src dominant negative mutant results in a significant decrease in the internalization of IBDV but has little effect on virus adhesion. Furthermore, short hairpin RNA (shRNA) downregulation of integrin, either the α4 or ß1 subunit, but not HSP90 remarkably attenuates IBDV-induced c-Src Y416 phosphorylation, resulting in a decrease in IBDV internalization but not virus adhesion. Moreover, interestingly, inhibition of either c-Src downstream of the phosphatidylinositol 3-kinase (PI3K)/Akt-RhoA signaling cascade or actin rearrangement leads to a significant decrease in IBDV internalization irrespective of the IBDV-induced high levels of c-Src phosphorylation. Cumulatively, our results suggest a novel feed-forward model whereby IBDV activates c-Src for benefiting its cell entry via an integrin-mediated pathway by the activation of downstream PI3K/Akt-RhoA signaling and cytoskeleton actin rearrangement. IMPORTANCE: While IBDV-caused immunosuppression is highly related to viral invasion, the molecular basis of the cellular entry of IBDV remains elusive. In this study, we demonstrate that IBDV activates c-Src by inducing the phosphorylation of the Y416 residue in c-Src to promote virus internalization but not virus adhesion. The ability to induce the level of c-Src Y416 phosphorylation correlates with the pathogenicity of an IBDV strain. IBDV-induced c-Src Y416 activation is α4ß1 integrin but not HSP90 dependent and involves the activation of the downstream PI3K/Akt-RhoA GTPase-actin rearrangement cascade. Thus, our findings provide new insights into the IBDV infection process and the potential for c-Src as a candidate target for the development of IBDV therapeutic drugs.


Assuntos
Infecções por Birnaviridae/metabolismo , Infecções por Birnaviridae/virologia , Vírus da Doença Infecciosa da Bursa/fisiologia , Integrina alfa4beta1/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Internalização do Vírus , Proteína rhoA de Ligação ao GTP/metabolismo , Quinases da Família src/metabolismo , Actinas/metabolismo , Animais , Proteína Tirosina Quinase CSK , Linhagem Celular , Embrião de Galinha , Galinhas , Fibroblastos , Proteínas de Choque Térmico HSP90/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Fosforilação , Transdução de Sinais , Ligação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA